vrouwelijke piloten

Status
Not open for further replies.
Re: Wel KLS

Re: Wel KLS

capt. Kebab said:
Afgaande op grondsnelheid vermenigvuldigt met de vierkantswortel van de glijhoek, heb je een direct omgekeerde evenredigheid van de afstand wanner je een dot low bent die grof te benaderen is met de inverse van de sinus regel.

In het algemeen komt dat neer op een tikje meer gas.

Damn, Als je die kist nou gewoon op de glideslope houdt
heb je deze onnodige discussie niet nodig, kunnen we weer verder auwehoeren over de dfa.......:grijns:
 
Flying Dutchman said:
Meester,

Ik geef gewoon wat gas bij als ik een halve dot below ben hoor. But then again, ik heb ook geen KLS achtergrond! ;)

FD

Ik heb ook geen KLS achtergrond... sterker nog, ik ben opgeleid in een "bananenrepubliek"! :)

De meeste _theorie_boeken zeggen dat je hoogte met gas regelt... ik zeg... "onzin". Als ik te laag zit trek ik aan 't stuur... dat de snelheid er een beetje uit loopt compenseer ik met een duwtje aan de gashandel... "Here, end of lesson". Ik heet niet voor niets _De_Meester :grijns:

Theorie sUxOrZ... !!!! I'm L33t!
 
De Meester said:
\Als ik te laag zit trek ik aan 't stuur... _De_Meester :grijns:

Theorie sUxOrZ... !!!! I'm L33t!

Ik dacht dat we het hier over vrouwen hadden en niet over trekken......
 
Easy as.....

Easy as.....

ONE, TWO, THREE, FOUR.
The only requirement for becoming a pilot are (1)that the body to be warm, (2) that the eyes be able to see lightening, (3) that the ears be able to hear thunder, (4) and that the mind be able to count to four. It's true that we only need to be able to count to four, and in some cases if we can count to three or two, that will suffice.
For example, we are aware that there are only four forces acting on the airplane at any given time: (1) lift, (2) gravity, (3) thrust and (4) drag. There are only three axes about which these forces act: (1) lateral, (2) vertical and (3) longitudi¬nal.We note there are only four funde¬mental phases of flight: (1) straight and level, (2) climbs, (3) glides and (4) turns. We find it is impossible to operate in more than two phases of flight simultane¬ously. It's obvious that we cannot fly straight and level and climb, glide and turn simultaneously. We can however (1) fly straight and level or we can (2) make climbing or gliding turns. When we do these sophisticated maneuvers we do so by changing one or a combination of only three variables that we as pilot have at our command:
(1)pitch, (2) power and (3) bank. For example when we discuss power it is one of two conditions, either (1) fixed or (2) in transition from one powersetting to another. When we make a power change, at that instant it is in transit from one setting to the other, and it becomes fixed when we set the throttle and leave it alo¬ne. Also when the engine quits we have a fixed power setting. ZERO. Let's look at how we pilots fly our aircraft (or how we think we fly it). When we do that difflcult maneuver of flying straight and level, what do we do?
(1)Do we maintain airspeed with the elevator (pitch) and altitude with the thro¬ttle (power), or
(2)Do we maintain airspeed with the throttle (power) and altitude with the ele¬vator (pitch)?
As we progress in our flying we are going to try to perform another difficult maneuver, to climb at a constant rate of climb with a constant airspeed.
(1) Do we maintain the airspeed with the elevator and the rate of climb with the throttle, or
(2) Do we maintain the airspeed with the throttle and the rate of climb with the elevator?
We are now going to proceed to that most difficult maneuvre, the precision ILS approach. When making the ILS ap¬proach:
(1) Do we stay on the glide slope with pitch and maintain the airspeed with po¬wer ,or
(2) Do we stay on the glide slope with power and maintain airspeed with pitch?
As we search for an answer to our first set of questions, think back to the last time you taxied out onto the runway and vigorously pumped the elevators in an attempt to make the airplane fly. Absurd? Yes! What we all do to make that piece of metal go faster, is add power. When the numbers on the other side of the run¬way become bigger, we normally make a pitch change to change our altitude. When we fly straight and level and we want to go faster or slower we change the position of our “go”lever, and if we want to descend or climb we merely pull or push on our “attitude changer”. The only time we can conceive of the elevator controlling the airspeed is at a fixed po¬wer setting of ZERO or during a full thr¬ottle take-off.
The same facts hold true in answering our second set of questions. We maintain the airspeed with the throttle (power) and the rate of climb with the "attitude chan¬ger" the elevator (pitch). Envision that you are climbing to a different altitude and wish to level off. As we approach that altitude do you stop your rate of climb by reducing power or do you chan¬ge your attitude (pitch) to level and then wait for speed to build to cruise speedbefore reducing the power?
Since we have used the term rate of cli¬mb let's briefly discuss the “rate of cli¬mb"”indicator.This instrument is really misnamed if you still call it a rate of climb indicator. What does it really tell us? It tells us (1) our rate of climb "up", (2) our rate of climb "down" or (3) that we are neither going up or down. There¬fore the instrument is really telling us what our vertical velocity rate is and sho¬uld be called a Vertical Velocity Indica¬tor.
As we get back to our subject in this di¬scussiori as to “what controls airspeed” and “what controls the rate of climb”, we can take some pointers from the la¬dies who participate in the "Powder Puff Derdy".
When the ladies are trying to get from one point to the other in the shortest pos¬sible time, what position is the go lever in? Of course it is full forward, and that certainly is not for the purpose of gaining altitude. If you were to talk to one of the ladies who just missed winning the race, what do you think she would like to say more than any thing else? You guessed it
She wants a bigger engine with more horsepower and not so that she can climb faster, but so she can go faster.
The answer to our last pair of questions can be best detected bv a flight down the ILS. We've got it "wired"(needles cente¬red) when we notice the airspeed is 15 knots slow. Do we solve the problem bv shoving the nose down to regain our airspeed? Heck no! We add power. Or if while making the approach we suddenly notice the glide slope needle has just hit the stops in the “up” position. Do you add power? All you would do is hit the ground sooner harder and even more short of the intended touchdown point. Instead you make an attitude change with a pitch up, combined with an application of power to maintain the airspeed.
From all this we can see that unless we have a fixed power setting of zero or full, we control the airspeed with the thr¬ottle and altitude with elevator.
We do have another "attitude changer" in our ailerons in that they can change us from "wings level" to one of the wings being not so level. However in order not to confuse ourselves we refer to this atti¬tude change as a bank change.
"So what is the rudder for? If you think the rudder is for turning the airplane you have just dated yourself. Take a look at the instrument which we will call a "nee¬dle and ball". When the aircraft is ban¬ked with the ailerons the needle moves. The steeper the bank the more the needle moves off center. Meanwhile, what has happened to the ball? It has gone somew¬here else too and you feel that things are not right. Take another look at the tube in which the ball is located. Somewhere near its center are two thin black lines. Now all you have do is apply rudder pre¬ssure on the same side as the ball is loca¬ted from the center of the tube, to place the ball back between the black lines on the tube. Therefore it can be seen that the "needle and ball" is in fact a turn coordinator or turn quality controller.
The real trick is to master the art of ma¬king turns in such a manner that the black ball remains between the lines thro¬ughout the maneuver.

The entire content can be summed up with the following simple statements:
(1) The throttle controls airspeed,
(2) The elevator controls the attitude and hence the altitude, (3) The ailerons bank the aircraft (make it turn) and (4) The rudder controls "turn quality".

We know all this and we still have not had to count to more than four.
 
Re: Easy as.....

Re: Easy as.....

capt. Kebab said:

The real trick is to master the art of ma¬king turns in such a manner that the black ball remains between the lines thro¬ughout the maneuver.

Doet me ergens an denken.

In techlog- " Slip ball appears to be stuck in turn"
Engineer's reply - " Congratulations, you just made your first coordinated turn"
 
From all this we can see that unless we have a fixed power setting of zero or full, we control the airspeed with the thr¬ottle and altitude with elevator.

Heb ik ergens toch echt geleerd dat power=altitude......
 
Jongens, jongens, jongens,
Dit is les 7 & 8 van je ppl Climbing And descending!!!

Al pacino zal jullie even bijles geven!

Met de throttle regel je je Rate of Descend/Rate of Climb,
En met Pitch regel je je snelheid!
Zoals je hopelijk altijd op final doet om je aiming point op dezelfde plaats te houden!


Volgens Capt. Kebab hadden we het hier over vrouwen dus bij deze:

http://www.webgirlsonline.net/uzgal...rls_making_the_fuck_out-index.php?id_gal=1022
 
Last edited:
Al Pacino said:
Jongens, jongens, jongens,
Dit is les 7 & 8 van je ppl Climbing And descending!!!

Al pacino zal jullie even bijles geven!

Met de throttle regel je je Rate of Descend/Rate of Climb,
En met Pitch regel je je snelheid!
Zoals je hopelijk altijd op final doet om je aiming point op dezelfde plaats te houden!



Al Pacino moet inderdaad mensen bijles gaan geven die niet verder zijn gekomen dan PPL. Jij als Captain A380 moet toch weten dat men in de grote luchtvaart snelheid regelt met gas en glijpad met pitch:1855:

Lees het verhaal van Kermit nog eens goed en je begrijpt waarom. Vraag me niet waarom iedereen, in de kleine luchtvaart, snelheid met pitch regelt.:confused: Lang geleden is mij dat ook eens geleerd. Nu zou ik er veel teveel over na moeten denken.


Stel ik ben een pilootje op de ILS: (zou ik wel willen als spotter.)

Ik zit op de ILS netjes met een 3 graden glijpad. Mijn snelheid loopt iets op. Volgens kleine luchtvaart moet ik dan pitch up. Vindt mijn FD niet leuk als ik dat ga doen. Die gaat pitch down aangeven. Ohh, snelheid eraf dan maar om glijpad te veranderen. Met een beetje geluk kom je dan weer netjes op je glijpad met goede snelheid en 3 graden.

Wat makkelijker was geweest: een beetje gas eraf en TDZ netjes stil houden in het ruitje.

Nog een verschil tussen kleine luchtvaart en grote. Pitch vliegen! Van horen zeggen: een kleine cessna kun je nog lekker roeren, maar een grote A380 moet met pitchveranderingen vliegen van tussen de 0,5 en 1 graad. Als je dan moet gaan nadenken over pitch-snelheid en gas -glijpad ben je al verloren bij een NDB approach single engine in IMC weer met een x-wind op de limieten.

Moet jij toch weten als testvlieger captain A380:D
 
Last edited:
Was het niet zo dat een hobbelduif perensap vliegtuig getrimd is voor sneldheid. Gas erbij omhoog, gas eraf omlaag.
Daar waar we AP vliegen in welke mode dan ook power erbij of eraf is snelheidsverandering (behalve IAS hold/FLC daar verandert je VS met powerveranderingen)
ILS met het handje: standveranderingen versus power erbij of eraf voor de juiste snelheid aanhouden.

VCC
 
Status
Not open for further replies.
Back
Top